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An alternative approach to attitude determination using a star sensor is presented. Whereas conventional star
trackers require star vector observations through an identification of star constellations and a tracking of the
identified stars, the proposed method takes multiple vector observations of virtual lines of sight instead of stars. A
virtual line of sight is the pointing direction of a small portion of a star sensor’s field of view and the vector to this line
of sight is measured by searching celestial positions having the same theoretical star densities with the measurements,
defined as the number of detected stars in the field of view. The suggested approach is based on the fact that the
distribution of stars in the sky is not homogeneous. A stepwise search method to determine the pointing directions of
multiple lines of sight that give the vector observation sequences is proposed, and a simple least-squares solution is
applied for the attitude determination using these vector sequences. The proposed method allows not only a stabilized
spacecraft but also a rotational one to take measurements; in the latter case the vector observations of stars are

usually difficult owing to the sensor’s motion.

L

TTITUDE determination specifies the orientation of the body-

fixed (BF) coordinate frame with respect to a given reference
coordinate system. The attitude determination of a spacecraft or
satellite is usually executed using a combination of sensors and
mathematical models. Several different algorithms that represent the
attitude in the form of a direct cosine matrix (DCM) [1], a quaternion
[2], Euler angles [3], Rodrigues parameters [4], or modified
Rodrigues parameters [5] have been developed to determine the
attitude. Methods have been devised to solve the attitude
determination problem using the vector measurements of the body
and the reference frame through a direct method or a filtering method.
The Triad algorithm only uses two reference vectors and is one of the
simplest algorithms [6]. Wahba proposed a least square estimate
method [7]. In addition to an analytical solution to the Wahba
problem [8], various numerical solutions have been proposed [9-16].
These methods require at least two vectors to estimate the attitude.
Many other algorithms need estimates of the body’s angular rates,
which can be obtained by gyro measurements because they use the
dynamics of spacecraft to estimate the attitude [17].

A sun sensor measures a sun vector, a magnetometer measures a
magnetic field vector, and a star sensor measures a star vector to
obtain the vector measurements. We can obtain vector measurements
by using a single sensor or a fusion of multiple sensors [18]. With the
recent advancement in imaging sensor technologies, the star sensor,
mounted on a spacecraft, is one of the most popular [19,20].
Although a star tracker, which uses a star sensor and an onboard star
catalog to estimate the attitude of a spacecraft, gives a very accurate
attitude estimate, the star tracker needs high computational power to
identify star constellations [21]. In addition, in the case of a spinning
spacecraft, accurate star vector measurements are not easy because a
star makes a streak in the image plane. When a spacecraft slews with
an angular rate, the vector observations require high update rates
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resulting low signal-to-noise ratio (SNR). This situation can be
relaxed by compensating the spacecraft’s rotation to make a star
sensor fixed in inertial space. However, this technique, called time-
delayed integration (TDI), needs information about precise angular
rates and raises the cost of the mission for a precision gauge.
Moreover, a gyroless single sensor attitude determination method is
required to fulfill a growing demand for small and inexpensive up-to-
date satellites.

To overcome the difficulties of star constellation identification
with a star pattern matching and those arisen from the streaks of stars
in the star vector observations, we propose a method to get multiple
vector observations for attitude determination, which uses the
number of detected stars in the field of view (FOV) of a star sensor as
a measurement. We have previously presented a similar approach to
obtain vector observations with this selection of a measurement [22].
The previous approach needs two star sensors with a gyro to
determine the attitude and requires high computational power to
evaluate the measurements with a bootstrap filter. In this paper,
however, we have designed a new method, which determines the
attitude using a single star sensor without any auxiliary sensors and
derives a more sophisticated measurement model than the previous
one. We determine the pointing direction of the star sensor boresight
on the celestial sphere. The general idea for that purpose is as follows.
The FOV of the star sensor is divided into several small portions
called sub-FOV. Then, on one hand, one counts the number of stars
above a given magnitude that are detected in each sub-FOV, and on
the other hand, one predicts the number of stars that should be
detected for a given pointing direction of the star sensor from a star
catalog. The optimal pointing direction is obtained by applying
various best-fit techniques. As the measurements are processed in a
single frame, the proposed method is a single-frame determination
method that does not require gyro data, and can be applied to a
spinning body because the proposed method counts only the number
of stars or star streaks.

The proposed method also has limitations compared to
conventional star trackers. It usually requires a large FOV resulting
in sun or Earth blockage. Under these blockage situations, it will not
be able to operate because the star sensor must count all stars in the
FOV. This problem can be mitigated by using more than one star
sensor pointing in different directions. The proposed algorithm will
fail to operate if a spacecraft rotates too fast to detect star streaks due
to low SNR. However, not all applications need vector observations
under this high angular rate.

This paper comprises the following: In Sec. II, brief reviews of
attitude representations and an attitude determination method are
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given. In Sec. III, a mathematical measurement model is derived; this
model is used for the creation of star-density maps. The attitude
determination method via two steps of estimation is developed in
Sec. IV. In Sec. V, several examples from simulation studies are
presented. Finally, our concluding remarks are described in Sec. VI.

II. Problem Statement

In this section, we briefly review some preliminaries such as
attitude representations and an attitude determination method. We
then describe our approaches to the problem attacked in this paper.

A. Attitude Representation

Attitude means the orientation of a BF coordinate frame )V with
respect to the reference coordinate system I{. Because all the
measurable star vectors necessary for attitude determination are
specified with an Earth-centered-inertial (ECI) coordinate in the star
catalog, we selected the ECI coordinate system as the reference
frame. Various parameters can be used to represent the attitude of a
body frame [23]. In our work, the attitude is parameterized by the
4 x 1 quaternion g and the 3 x 3 DCM A. The quaternion is a unit
vector in R* and composed of a vector and scalar part as

q =191.92. 43, qu]" = [v. qu]" (1)

where the superscript T represents the transpose. The attitude
representation with a quaternion is related to the rotation axis and the
rotation angle, which is necessary to align the body frame to the
reference frame as

v = nsin(0/2), q4 = cos(0/2) ()

where n is a unit vector corresponding to the axis of rotation and 6 is
the angle of rotation.

A unit vector r in U is transformed to the unit vector b in V via the
DCM A:

b =Ar 3

The relationship between the DCM and the equivalent quaternion
can be described as follows:

Alg) = (43 = 070) sy + 2007 — 2q,[vx] @

Here, I3, is the 3 x 3 identity matrix and the cross-product matrix
[vx] is defined as

N 0 —q3 42
[vx]=| g5 0 —q (5
—4q2 4 0

B. Attitude Determination

From Eq. (3), the attitude matrix can be determined by a
deterministic method that uses vector measurements. However,
because this measurement usually has a measurement error, we
should apply some numerical methods to estimate the DCM. In this
case, the measurement model is

b =Ar+ b (6)

where b is the measurement error. The attitude estimation now can
be formulated as a least-squares problem from multiple vector
observations. That is, if we observe a set of vectors, b;(i =
1,2,---, N) where N is the number of vector observations, in the BF
frame, and we know the corresponding set of vectors, r;, in the ECI
coordinate, the DCM can be estimated by finding the DCM A, which
minimizes

N
> b —Ar|? )
i=1
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Fig. 1 Coordinate systems. The ECI coordinate system (x,, y,, z.) and
the body-fixed frame (x,, y;, 2;).

where | - ||> denotes a vector L>-norm, subject to the constraints
ATA =I5 and det(A) = 1. This attitude determination problem is

well known as the Wahba problem [7].

C. Solution Approach

For attitude determination, we first measure physical vectors in the
BF frame and find the corresponding vectors in the ECI coordinate
system. Most previous methods using star sensors observe the star
vector, which is the unit directional vector of LOS to the star, and
obtain the corresponding reference vector from the star catalog by
identifying star constellations using point-matching algorithms. A
directional vector is specified in the ECI coordinates with two angles
called the right ascension (RA) « and the declination (Dec) § by
projecting the vector onto the celestial sphere, which is a unit hyper-
sphere S?, as shown in Fig. 1. The unit vector r = [ry, r,, 3]s
Cartesian coordinate can be converted to the celestial position x =

[or. B" as

®)

X = f(r) = |:arctan(r2/r])i|

sin~!(r3)

where f.(-) transforms a Cartesian coordinate into the spherical
(celestial) coordinate and the degree unit is used.

In our method, instead of observing a specific star to obtain the
directional vector, we set up a sequence of directional vectors of sub-
FOVs around the optical axis of the star sensor in the BF frame and
find the corresponding vectors in the ECI coordinate system by
comparing the number of detected stars from each sub-FOV and the
references obtained from a mathematical model.

III. Mathematical Model

To avoid difficulties arising from the star vector measurement, we
select the star density, i.e., the number of stars, in the FOV of star
sensor as a new measurement. A reference star-density map that
covers the whole celestial sphere can be formulated from a star
catalog. We derived a mathematical model to create the density map
with a probabilistic detection model.

A. Measurement Model

The star catalog used for attitude determination contains star
positions given as RA and Dec at some epoch. The star positions
reported in the Smithsonian Astrophysical Observatory (SAO) or
AGK-3 star catalogs are accurate to approximately 1 arc-sec.

To obtain the statistical response of a star sensor for the number of
stars detected inside its FOV from a star catalog, some assumptions
as follows are required: First, all the detected stars by the star sensor
having a detection threshold are listed in the star catalog. This
assumption is not always reasonable when we use an onboard star
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catalog, which usually omits double stars and variable stars.
However, because the star catalog including all stars brighter than the
detection threshold is available and will be used on the ground in our
algorithm, this assumption is a plausible one. Second, we have well-
defined instrumental magnitudes for all the stars. That is, the mean
and the standard deviations of the magnitude are given for each star.
Because the standard deviation of magnitude of a star catalog is
mainly affected by the sensor’s optical characteristics, it is assumed
that all stars have an identical standard deviation and Wertz [24]
certified this fact. Third, the star sensor has an exact detection
threshold represented in the magnitude. Because the spin of a
spacecraft usually results in the degradation of SNR and so the
detection threshold values varies according to the angular rate, this
third assumption is equitable only for a certain range of angular rate
with which a sufficient number of stars are detected. Of course, if the
angular rate goes over a certain threshold, the detection threshold will
go down that no stars are detected. Fourth, the resolution of the star
sensor is high enough to separate adjacent stars. Finally, the FOV of
the star sensor has a circular shape so that the rotation of the body
does not affect the measurement value.

Now, we derive the statistical response of the star sensor to count
the number of stars in the FOV. Let N, be the total number of stars in
the FOV when the direction of the optical axis of the star sensor
points to the location x and let my, be the magnitude threshold of the
star sensor for the detection of stars. The magnitude of the iy, star is
normally distributed, A (m;,0?), from the second assumption.
Therefore, the detection probability of the i, star is given by

exp(— b — ’"")2) dx  (9)

207

My, 1

pi = Plm; <my] =
—00 V210

Here, the inequality sign and the range of integral was chosen that
way because the brighter the star is, the lower magnitude it has. Let
s; € {0, 1} be a random variate for the iy, star of N, where s, =1
means that the i, star is detected by the star sensor. By using Eq. (9),
the mean ; and variance o7 of s; are given by

Wi = p; (10)
of = pi(1=p) (11)
Let (sq,85,...,8 Np) be a set of N, independent random variates, and

each s; has a binomial distribution with a mean and a finite variance
given in Egs. (10) and (11). Let n, be defined as
n,=sy+s+--+sy.If N,is a sufficiently large number to
apply the central limit theorem, then the random variate n, is
approximately normally distributed with [25]

N,

My = Y Pi (12)
i=1

N,
05,7 =Zpi(1 - i) 13)
i=1

Consequently, when N, stars with different means and the same
variance exist inside the FOV for a given orientation of the star
sensor, the number of stars detected by the star sensor has a normal
distribution.

B. Star-Density Map

Figure 2 shows the distributions of stars brighter than 6.0
magnitude extracted from the SAO star catalog, which contains
258,996 stars. Because the density of the cloud varies according to
the RA and Dec, as shown in Fig. 2, the star-density map also
depends on the location, the FOV size, and the magnitude threshold
of the star sensor.

The derived mathematical model allows one to make star-density
mean and variance maps, which are two-dimensional (2-D) maps that

Stars in the ECI Frame
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Declination, deg

M S B P L
0 50 100 150 200 250 300 350

Right Ascension, deg

Fig. 2 Distribution of stars brighter than 6.0 magnitude from the SAO
star catalog.

have linear grids with respect to RA and Dec; the value at the grid
pointis given by Eqs. (12) and (13), respectively. From the geometry
in Fig. 1, the vector of the sensor’s optical axis p, represented by the
Cartesian coordinate, is mapped into RA and Dec, x = [«, 8], in the
celestial coordinate system. Therefore, for given p, the reference
star-density map is subject to the celestial position x, the star sensor’s
FOV ¢, and the threshold of the magnitude, my,, of the star sensor:
h(x, ¢, my). Suppose that whole stars contained in SAO star catalog
are considered, and the star sensor has my, = 6.0 with ¢ = 15 deg;
the star-density mean map, %,,(x), and the variance map, %, (x), are
shown in Fig. 3. Here, my, and ¢ are omitted because there is no
ambiguity. The grid size of each star-density map is 1 deg, as shown
in Fig. 3. When x is not located on the grid point, the map value is
computed by the bilinear interpolation as

Ih(o, Bo)] = hlay, By) + h(ay, Br) (g — )
+ h(ay, B)(Bo — B1) + th(ay, By) + (e, Br)
— h(ay, Br) — h(a, B) (g — ) (Bo — B1) (14)

where Z[h(ay, By)] is the interpolated value at the position x =
[, Bo]" and [e;, B;]T for i = 1,2 is a grid point.

Finally, the measured number of stars detected by the star sensor is
modeled as

2 = [Z[h, ()] + n(x)] 5)

where [-] is a ceiling operator, which denotes the quantization error,
and Z[-] is the bilinear operator. Here, 7 is the digitization error
caused by a bilinear interpolation. The digitization error has a
uniform distribution whose mean and variance are dependent on the
state vector of the sample and the four grid values of the star-density
map surrounding the sample.

IV. Attitude Determination Method

The preferred directional vector, which we can easily select in the
BF frame, is the directional vector of the optical axis of the star
sensor. Although we can estimate the orientation of this single
observation, it is necessary to get more directional vector
observations to estimate an unambiguous attitude because of the
ambiguity of rotation. For this reason, we set up a sequence of
directional vectors with the optical axes of sub-FOVs. The sub-FOV
is defined as a virtual FOV covering a small portion in the physical
FOV, called the main-FOV in this paper, of the star sensor. As shown
in Fig. 4, we establish the sub-FOVs as inscribed circles to the
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Fig. 3 a) Star-density mean map and b) star-density variance map; m, = 6.0 and ¢ = 15 deg.

main-FOV. Note that the sub-FOV is a conceptional FOV, which
requires no physical sensor. The angle ¥ between the directional unit
vector of the main-FOV, p™, and that of sub-FOV, p?, satisfies the
following relationship:

(r")'p} P Py
1//=cos—1(T = _& (16)
™ [l pill 22
where |- || is a vector L?-norm, ¢,, is the main-FOV angular

diameter, and ¢, is the sub-FOV angular diameter. For notational
simplification, we set p™ = [1, 0, 0]”. This setting means that the star
sensor is oriented along the x-axis of the BF frame. The directional
vector of the optical axis of ith sub-FOV, p{, can then be calculated as

cos ¥
pi=| sinycosy, a7
sin ¥ sin y;

where y; =360(i — 1)/N, deg for i =1,---, N, when N, is the
number of virtual sub-FOVs.

A. Coarse Attitude Estimation Using Sequence Matching

Now, we can estimate the attitude by finding the view positions or
ECI coordinates of the sequence of virtual directional vectors and
solving Eq. (7) using these vectors. The search for the ECI
coordinates of the optical axis can be performed through sequence
matching between the sub-FOV measurements and the star-density
map.

1. Prefiltering

Basically, we can search full areas of the star-density map to find
the celestial position of the optical axis of the main-FOV. When a
search is performed only on the grid points of the map, however, a
total of 64, 800(=360 x 180) matching function evaluations should

virtual optical direction ~_
~

physical optical direction

~ 4
pre-filtering FOV
(¢n)

Zy

BF coordinate main-FOV (¢,,)

Yb
Xb
Fig. 4 Sub-FOV concept.

be performed. This full-search strategy is cumbersome and time-
consuming work. To overcome this problem, we select candidate
points by using a prefiltering approach. The basic idea is to select grid
points having the measurements of the given FOV before sequence
matching. Because the number of grid points having the same
number of stars may still be too large under the main-FOV
measurement constraint alone, we can force an additional FOV
measurement condition by changing the angle of the FOV, as shown
in Fig. 4. To accomplish the aforementioned procedure, we exclude
grid points that do not satisfy the following conditions:

h/l,(x’ ¢m) - Kh(f(xv ¢m) = z(i),,, (pm) = h/[.(x9 ¢m) + Kh(r(x’ ¢m)
h/,L(x’ ¢n) - Kha(xv ¢n) = Zd),, (pm) = hu(x9 ¢n) + Kha(xv ¢n)
18)

where ¢,(<¢,,) is a prefiltering FOV angle, z,(p) means the
measurement of FOV ¢ with a unit vector p of optical axis, and k is a
constant to control the number of candidate points.

2. Sequence Matching

We should determine the right position of p™ among the candidate
positions obtained by using prefiltering. This process can be
accomplished by selecting the candidate position that gives the
maximum sequence-matching value with the observed measurement
sequence. Let the measurements sequence be denoted by z =
124, (P}), -+, 24, (Py,)} and sample the star-density map around a
candidate point to make a template sequence h; = {h,(xl, ), -,
hﬂ(x{vx, ¢,)} for j=1,2,--- N, where N, is the number of
candidate points resulting from prefiltering and x! is the celestial
position that corresponds to the directional vector of the virtual
optical axis p{ when the physical optical axis is mapped onto the
candidate point j in the celestial coordinate. Note that although the
origins of the virtual sub-FOV describe a circle in the BF frame, x’
does not shape a circle in the star-density map because the spherical
coordinate is mapped onto the 2-D Cartesian coordinate. The
determination of x! at a candidate position x,, or p. in the Cartesian
coordinate, is accomplished by first posing a directional vector p,,
which forms an angle of i with p, with same Dec f, and, next,
rotating p, with the rotation axis p. and rotation angle 6, = 360(k —
1)/N,fork =1,---, N,. These processes can be performed using the
quaternion and Eq. (4) as

yi=Aq) - p, (19)
where
_ | V1 —cos*(6,/2) - p,. =
6= [ cos(@k/kZ) ' k=12..N, @0

Here, y{; is the vector of the Cartesian coordinates corresponding to
x.

Given the sets of N, vectors z and h;, we find the proper k ;, which
brings the best match with z. A correlation between the measurement
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sequence and a reference sequence provides a matching measure-
ment. However, h; should be reformulated for all possible rotations
because we know only the point corresponding to the rotation axis,
not the point corresponding to the rotation angle. Reformulated
sequences are the circular shifted versions of &; and have N, cases.
To avoid computing correlations for N; x N, cases and to obtain the
rotation-invariant property, we apply the fast Fourier transform
(FFT) to h; and z. The selection of the best match finds j, which
maximizes

m, = max{corr((FFT(h)|. [FFT(2)))}, ~ j=1.2.-.N,
J

@n

Here, corr(m, n) means the correlation between the two vectors m
and n, FFT(-) is the elementwise FFT, and | - | is the complex norm.
Finally, to obtain the rotational factor, we compute the correlations
for all circular shifted sequences and choose the maximum as
follows:

n, = max{corr(h, . 2)} (22)

where hi,, is the ith circular shifted vector of h,, fori=0,1,---,
N, — 1. The preceding calculations of circular correlation and FFT
are, in effect, calculating the rotation angle about p™ and give the
third axis of attitude, though with a reduced accuracy, which can be
increased in proportion to the number of sub-FOVs N.

Now, the DCM A can be estimated by solving Eq. (7); this
minimization problem is solved in the least-squares sense by the
pseudoinverse equation defined by

A = RBT(BBT)™! (23)

where
B=[pt.ps i ]

R= [yn'","+1 Vs NG ym]

The coarse estimation presented in this section shows the results of
the grid resolution, i.e., 1 deg, for the celestial position of the optical
axis. It is necessary to subdivide the grid point to obtain a more
minute position. This hierarchical approach can be applied iteratively
until the designed resolution is achieved.

B. Fine Attitude Estimation Using the Simplex Method

Instead of adopting a hierarchical method that needs a
modification of the star-density map to a higher resolution, we can
take an optimization approach to estimate the attitude more precisely.
We define the following cumulative cost function, which compares
the measurements and the reference values of the map:

e = mind 3 (], ) ()
[, )} + (=) )1}

where [x}], is the circular shifted version of x; represented as

s

I:x’/{:l — {x(k-%—n;)mode for k # Nx — ng

n Xy for k=N, —n,

Here, [x}], can be obtained using the procedure of the circular shift
correlation of the preceding section. The preceding equation shows
that the rotation factor should be founded at each evaluation of the
cost function. As shown in Fig. 3, high star-density regions have high
variance bringing about a chance of large error. This fact results that a
large measurement contributes to the cost function more than a small
one regardless of the frequency of unmatched points. To normalize
the effect of this inequality, we adopted a normalizing factor A(z).

10000 T T T T T T

9000

8000

7000

6000

5000

Number of grid points
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1000 |-

0 10 20 50 60 70

3 40
Number of stars in the FOV
Fig. 5 Measurements distribution for ¢ = 15 deg.

Figure 5 shows the histogram of the measurement. The x- and y-axes
denote the number of stars in the FOV and the number of grid points
(bins), respectively. Because the measurement z; is a nonnegative
integer set, the measurement model has a non-Gaussian probability
distribution. In Fig. 5, the distribution of measurements is
approximately the Erlang, p(z) ~ exp[—(2 — Zmean)/Zmin), Where
Zmean aNd Zp;, are the mean and minimum values of the possible
measurements. We can estimate the mean value of measurements as
about 20 in Fig. 5. As aresult, the weighting factor A(z) is determined
as A(z) =exp(20/z) to give a unit weight to the mean value of
measurements and a small weight to the large measurements.

One of the suitable optimization algorithms that find the local
minimum of Eq. (24) is the downhill simplex method [26]. By setting
an initial point x, as x™, which is the result of the coarse estimation,
we can estimate the more precise position of the optical axis by
applying the downhill simplex method. Similar to the coarse
estimation, the circular shift correlation and the least-squares solving
method are needed after the optimization process to estimate the
attitude.

C. Algorithm for a Spinning Case

There are some issues to be carefully considered to use the
proposed algorithm with a spinning spacecraft. In the case of a
spinning spacecraft, the stars make streaks in the image plane. This
results in the degradation of SNR. Moreover, during the integration
period, some stars will enter the FOV while some will exit and two
star streaks might intersect in the image plane. These will affect to the
star count. All these matters can be solved using the TDI technique
which compensates for the motion of spacecraft; however, it can only
be applied to rotations about an orthogonal spin axis and needs the
angular rates. Liebe et al. give very good clues to the solution of the
star streaks problems [27]. They proposed a stellar gyroscope, which
is a star tracker that can operate at high slew rates and high update
rates. In the stellar gyroscope, the spin rate and the spin axis are
obtained from the length and the shape of the star streaks and the star
streaks are fitted to the spherical circles by projecting the sensing
image to the unit sphere. The polarity of the spin also can be
determined from the two different images acquired in fast sequence,
thus, the start point and the end point of a streak can be discriminated.
These techniques can be used to get the number of streaks in the star
sensor image.

The degradation of SNR is the inevitable result of spinning,
accordingly the detection threshold should be appropriately adjusted.
Fortunately, a detection threshold can be calculated for spin rates so
that, if we get a spin rate using a stellar gyroscope or a conventional
gyroscope, we can determine the detection threshold. Reasonably,
the high angular rate over a certain threshold results in a too low
detection threshold and the proposed algorithm will not operate. This
angular rate threshold depends on the sensor characteristics like the
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number of pixels and the sensor sensitivity used in the star sensor. For
the case of spinning spacecraft, because the attitude changes during
an integration time, we just estimate the attitude at the start time of
integration. To count the number of stars in the FOV at the start time,
newly entered stars after the start of integration should be excluded
from the number of streaks. The number of streaks can be counted by
means of a spherical circle fit. Using this spherical circle fitting, two
intersected streaks can be discriminated and counted as right because
it would be fitted to different spherical circles. The star streaks
entered in the FOV during the integration time have the start points
on the boundary of the FOV. Among these stars, some are newly
entered and the others are on the edge of FOV at start time. Two
different images acquired in fast sequence discriminate between the
former and the latter because the latter is not present in the previous
image. For details on detection threshold adjustment, spherical circle
fit, and star streaks, see [27].

D. Storage and Computational Requirements

To compare storage requirements and computational require-
ments for the proposed method with that of an attitude determination
algorithm that must identify individual stars, the star catalog having
Ny stars and the star-density map of N, grid points are considered.
In the following discussions, although there are many known
algorithms that reduce storage requirements or computational
requirements, we do not take into account these techniques and
roughly calculate the requirements for simplicity. A conventional
method which uses three stars to identify constellations require the
whole star catalog which includes the right ascension and the
declination of each individual star for N, stars. On the other hand,
the proposed method needs a star-density mean and variance maps,
which have N, grid points. After all, whereas the conventional
method requires 2 X N, storage, the propose method requires only
4 x N, storages. Although N, and N, vary according to the
operating situations like the star catalog used, the spacing of the star-
density map and the detection threshold my,, Ng,, is usually much
larger than N, . For example, Ny, = 258,996 and N, = 64, 800 are
used in our simulation studies in which my, = 6, thus the proposed
method uses only 50% storage compared with that of conventional
method. It is well known that the conventional method has O(N3,,)
complexity for whole search to identify star constellations. The
proposed method has O(N.N,log,N,) complexity, which mainly
comes from the calculation of FFT in each evaluation of cost
function. This is a much lower complexity compared with O(N3,,).

V. Simulation Examples

An extensive simulation study was performed to investigate the
proposed method through simulated examples. To evaluate the
performance of the estimator, a convergence index is defined as [3,4]

A
c= ”Alrue - Aesl”%‘ (25)

where || - || is the Frobenius norm of a matrix, A, is the true DCM,
and A, is the one estimated by the proposed method.

The parameter determination of ¢,,, ¢,, my,, N, and «k plays an
important role in the performance of the proposed algorithm. The
angle of the sub-FOV and the detection threshold are determined in
due consideration of the sky coverage, which is defined as the
proportion of the celestial points where the suggested method can be
applied [28]. Our method will operate even when there are no stars in
one of the sub-FOVs, on the condition that there exists a variance
between the sub-FOV measurements. However, if we select too
small an angle to include stars in the sub-FOV, there will be the
increase of possibility of low variance between the measurements
because the contour of star-density map has a slow gradient in the
most positions. Although it is not a mandatory condition, according
to our simulation studies, there is a sufficient variance to operate our
algorithm if we choose that all the sub-FOV's have more than one star.
We simulated the sky coverage as the percentage of the grid point
where more than one star is in the FOV for a successful operation.
Figure 6 shows the sky coverage as a function of the FOV for
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Fig. 6 Sky coverage as a function of the FOV for various magnitudes.

different detection thresholds. The sky coverage should be close to
100% to operate the proposed method at all attitudes, and so we
selected the detection threshold as my = 6 and the sub-FOV as
¢, =15 deg to give some margins. Because the rest of the
parameters are closely related to the celestial position at which they
are computed, and a large variance between measurements results in
a good match, we should determine the parameters so that the
proposed algorithm will operate even at the position of the minimum
variance of the measurements. We computed block-variances of star-
density mean map by sliding a window of size from 1 x 1to 30 x 30.
Here, the block-variance means the variance of star-density mean
value in a window and multiple choices of window size are needed
due to the uncertainty of the angle of FOV. After averaging these 30
block-variance maps at all the grid points, we selected 50 grid points
of minimum block-variance mean map. Figure 7 shows the block-
variance mean of 30 block-variance maps and 50 minimum grid
points. Now, these 50 grid points are latent positions having the
minimum variance of the measurements. To determine the angle of i
that gives the highest variance in latent minimum variance positions,
a variance is computed as a function of v at these 50 grid points.
Here, the variance is computed with a measurement sequence of 360
sub-FOVs making an angle of v with the line of sight of each grid
point. The averaged variance of these 50 grid points as a function of
Y is shown in Fig. 8. The angle ¥ = 15 deg gives the maximum
variance in Fig. 8. The main-FOV is therefore ¢, =45 deg,
according to Eq. (16).

+: 50 minimum variance points

'
’

Declination, deg

50 100 150 200 250 300 350
Right Ascension, deg
Fig. 7 Variance mean map and 50 minimum variance points.
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Fig. 8 Variance mean as a function of ¥ when N, = 360.

The selection of N is related to the accuracy of estimation because
it determines the resolution of the rotation factor. However, a large
N, over a certain threshold value not only increases the
computational load but also does not increase the resolution due to
the limitations of the star-density map resolution. To determine the
optimal number of sub-FOVs considering this limitation, the
variance mean of 50 minimum variance grid points with ¥ = 15 deg
is plotted as a function of N, in Fig. 9 and we set N, = 360, which
gives an error angle of rotation ranging —0.5 < e, < 0.5, where ¢, is
the rotation error in degrees. Finally, the constant x of Eq. (18) is
chosen as « = 0.2; this value always gives sufficient candidates,
including the nearest grid point to the true position for all the cases we
tried. This value can be modified to obtain a proper candidate number
considering the computational capacity of the estimator. Two star-
density maps of my, = 6.0 have been created using the measurement
model from the SAO star catalog for ¢, =45 deg and
¢, = ¢, =15 deg. The choice of the same angle for ¢, and ¢,
reduces the number of star-density maps necessary for the execution
of the algorithm.

The results of a few examples are shown next. In the first example,
the attitude is attentively selected so that the optical axis points to the
worst position in the sense of the minimum variance to show the
robustness of the method. The true attitude is set to
q =1[-0.9989, 0.0452,0.0140,0.0025]", which maps the main
optical axis to the true celestial coordinate x,,=
[185.1834,—1.6179]" deg. Table 1 shows the true attitude and
summarizes the simulation environments. Figure 10 presents the true

Variance mean of 50 minimum variance grid point when y=15
7.6 T T T T T

741 .

721 .

6.8 - 1
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6.6 .
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6.2 .

6 ! I ! I I
0 200 400 600 800 1000 1200

Ns
Fig. 9 Variance mean as a function of N, when ¢ = 15 deg.

and candidate positions of x,, that satisfy the conditions of Eq. (18).
The candidate positions that satisfy the first inequality and the second
inequality of Eq. (18) are represented by the point and the asterisk
marker, respectively. Although each inequality condition gives
much more candidate positions, the total number of candidates
satisfying two conditions simultaneously is N, =9. The coarse
estimation with sequence matching gives x,, = [186,—1]7. The
results obtained with this coarse estimation after finding the virtual
directional vectors and applying the least-squares solution are
summarized in Table 1. The downhill simplex optimization with the
initial value x, =[186,—1]" converges to the more precise
estimation as x,, = [185.1808, —1.6196]" in 34 iterations. This fine
estimation yields an error of under 100th degree. Figure 11 plots the
true and estimated position of x,,, and positions of the origins of the
virtual sub-FOVs. As shown in Table 1, the convergence index gives
an indication of the estimation accuracy of the proposed algorithm.
To show that the procedure also matched rotation about the p,,, we
show the rotation angle 6 and the positions of y-axis and z-axis of BF
frame in the table.

The parameters used in the preceding example are optimized in the
sense of the variance; the main-FOV ¢,, = 45 deg may be too wide
in comparison with that of conventional star sensors. The next
example assumed ¢,, =30 deg to show the feasibility of the
algorithm under a plausible main-FOV. The parameters and the
results of simulation are summarized in Table 2. In this example, the
candidate number after prefiltering is N. = 108, which is larger than
that of the first example because the difference between ¢,, and ¢, is

Table 1 True attitude parameters and estimated parameters when ¢,, = 45 deg

Parameter

True value

Position of optical axis, x,,
Position of y-axis, x,
Position of z-axis, x,

[185.1834,—1.6179]" deg
[275.1894, —0.2130]" deg
[192.6864, 88.3681]" deg

Rotation angle, 6
DCM, A

FOV

Position of optical axis, X,
Position of y-axis, X,
Position of z-axis, X,
Rotation angle, 6

DCM, A

Convergence index, C

179.7135 deg
—0.9955 —0.0903 —0.0282

0.0904 —0.9959 —0.0037
—0.0278 —0.0063  0.9996
¢ =45 deg ¢y = ¢, =15 deg
Coarse estimation Fine estimation
[186,—1]" deg [185.1808, —1.6196]" deg

[276.0198, —1.1315]" deg
[234.5396, 88.4899]" deg
178.8176 deg

—0.9944 —-0.1045 —-0.0175

[275.1869, —0.2132]" deg
[192.6838, 88.3664]" deg
179.7138 deg

—0.9955 —0.0903 —0.0283

0.1049 —0.9943 —0.0197 0.0904 —0.9959 —0.0037
—0.0153 —0.0215  0.9997 —0.0278 —0.0063  0.9996
0.0012 5.8380 x 107°
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. : candidate position, FOV=45 deg
" : candidate position, FOV=15 deg
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Right Ascension, deg
a)

o: true position
+: candidate position

Declination, deg
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b)

Fig. 10 a) Candidate positions when ¢,, = 45 deg and ¢, = 15 deg, respectively. b) True position of the main-FOV origin and candidate positions

resulted from the prefiltering.

o: true position
x: estimated x™ position
. estimated xS position

20

o

Declination, deg
(]

120 180 200 210 220
Right Ascension, deg
Fig. 11 Result of fine estimation when ¢,, = 45 deg.

140 160 160 170

larger when ¢,, = 45 deg compared with the case of ¢,, = 30 deg.
Figures 12 and 13 show the candidate points after prefiltering and the
estimated positions of main-FOV after the fine estimation stage,
respectively. The resulted convergence index proves the

=] o: true position

+: candidate position
&0
40

Declination, deg
[}

=

50 100 150 200 250 300 350
Right Ascension, deg

Fig. 12 Result of prefiltering when ¢,, = 30 deg.

accommodation of the algorithm in the determination of the LOS
of the main-FOV.

Finally, a spinning spacecraft with the angular rate o=
[-10,20, —10]" deg /s is considered. In this case, the detection

Table 2 True attitude parameters and estimated parameters when ¢,, = 30 deg

Parameter

True value

Position of optical axis, x,,
Position of y-axis, x,
Position of z-axis, x,

[168.6901,47.1666]” deg
[333.4349,41.8103]" deg
[70.3462,7.6623]" deg

Rotation angle, 6 246.4218 deg
DCM, A —0.6667 0.1333  0.7333
0.6667 —0.3333 0.6667
0.3333  0.9333  0.1333
FOV ¢, =30 deg ¢y = ¢, =15 deg

Coarse estimation
[168,48]" deg
[334.1173,41.1568]" deg
[70.2274, 6.9428ey]" deg
246.5768 deg

Position of optical axis, X,
Position of y-axis, £,
Position of z-axis, X,
Rotation angle, 6

Fine estimation
[168.6745,47.1833]" deg
[333.6097,41.8193]" deg

[70.4338,7.5649]" deg

246.5318 deg

DCM, A —0.6545 0.1391 0.7431 —0.6664 0.1335 0.7335
0.6774 —0.3287 0.6581 0.6676  —0.3313 0.6668
0.3358 0.9341 0.1209 0.3320 0.9341 0.1316

Convergence index, C 6.4915 x 104 1.0500 x 1075
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o: true position
x: estimated x™M position
. : estimated xS position

Declination, deg
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=]
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Right Ascension, deg

Fig. 13 Result of fine estimation when ¢,, = 30 deg.
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Fig. 14 Changes of the number of stars in the case of spinning.

500

threshold should be lower than that of the preceding two examples.
The same star sensor used in [27] is assumed and the parameters
calculated for the stellar gyroscope are used in our case for the
simplicity of simulation. The magnitude threshold and the
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integration time are set as mgy =4 and 500 ms, respectively,
considering the angular rate [27]. The main-FOV is ¢,, = 45 deg as
in the previous examples, but the prefiltering FOV and the sub-FOV
are set as ¢, = ¢, = 30 deg due to the lack of stars resulted from a
lower detection threshold. The same attitude with the first example at
the start of integration is assumed. The number of stars as a function
of the integration time is shown in Fig. 14. In Fig. 14, the solid line
shows the change of the number of stars in the main-FOV and the
dotted line shows that in the prefiltering FOV. These changes are due
to the in-and-out of stars during the integration time. The resulting
estimated view position and other parameters are summarized in
Table 3. Because the prefiltering gives much more candidates
(N, = 1511) than the first example when the same «(=0.2) is used,
the result of coarse estimation is more accurate compared with that of
the first example. However, the result of fine estimation shows a
lower accuracy than that of the first example and it is on account that
the variance of the number of stars in case of my, = 4 is lower than
that of my, = 6.

VL

In this paper, an alternative approach to vector observations for
attitude determination using star-density maps is presented. It uses a
new measurement, i.e., the number of stars in the FOV, based on the
distribution of the stars in the celestial coordinate system. Basically,
attitude determination is performed by solving the least-squares
problem using vector measurements. The proposed method includes
two steps for the vector observations. In the coarse estimation stage,
the vector measurement for the optical axis is performed through a
sequence-matching method. The downhill simplex optimization
method with the initial value estimated in the coarse stage is used in
the fine estimation stage.

The proposed method retains the following features: With a little
modification of detection threshold in the proposed algorithm, the
number of stars as the selection of measurement makes it possible to
apply this method to a rotational star tracker in which the accurate
vector measurement of the star is impossible. It is not necessary to
track the stars and to identify the stars with a pattern recognition
algorithm. The creation of the star-density map according to the FOV
will be executed on the ground before launching, so an onboard star
catalog is not necessary. Although the assumptions we postulated for
the measurement model may look absurd in the cases when there are
some screened stars or the stars are too close together over the
resolution of the star sensor to separate, the adoption of sub-FOVs
reduces errors because they divide the main-FOV area and allow
multiple vector observations with a single star sensor. The
probability that there is an error of measurement in one of the sub-
FOVs is lowered as the number of sub-FOVs increases. Moreover,
because the proposed method is a single-frame attitude

Conclusions

Table 3 True attitude parameters and estimated parameters in the case of spinning

Parameter

True value

Position of optical axis, x,,
Position of y-axis, X,
Position of z-axis, x,
Rotation angle, 6

DCM, A

FOV
Magnitude threshold, mg,

Position of optical axis, X,
Position of y-axis, %,
Position of z-axis, X
Rotation angle, 6
DCM, A

Convergence index, C

[185.1834,—1.6179]" deg

[275.1894, —0.2130]" deg

[192.6864, 88.3681]" deg
179.7135 deg

—0.9955 —0.0903 —0.0282
0.0904 —0.9959 —0.0037
—0.0278 —0.0063  0.9996
¢ =45 deg ¢, = ¢, =30 deg
4
Coarse estimation Fine estimation
[185,—2]" deg [185.4274, —1.5694]" deg

[274.9697,0.8683]" deg
[161.5126,87.8195]" deg

[275.4302,—-0.1029]" deg
[189.1788,88.4272]" deg

180.7807 deg 179.8229 deg
—0.9956 —0.0871 —0.0349 —0.9951 —0.0945 —-0.0274
0.0866 —0.9961 —0.0152 0.0946  —0.9955 —0.0018
—0.0361 —0.0121  0.9993 —0.0271 —0.0049  0.9996
8.3018 x 10~* 4.4178 x 1075
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determination solution, which obtains all vector measurements at the
same attitude, this method does not use the kinematic model of the
rigid body and does not require any angular rate information.
Therefore, the proposed method only needs a single star sensor for
attitude determination without the help of redundant sensors such as

a gyro.
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